Informatique Pour Tous

TD 20 - Algorithme de recherche dichotomique dans une liste triée

On dispose d'un vecteur ou d'une liste d'éléments, L contenant N éléments. On se place ici dans le cas le plus simple qui est le cas d'une liste triée par ordre **strictement croissant**, c'est-à-dire :

$$\forall i \in [0, N-1], L_i < L_{i+1}$$

(la suite des (L_i) est strictement croissante). On cherche ici un L_k en particulier, c'est-à-dire l'indice k correspondant à un élément, unique, de la liste.

```
def dichotomie(a, L): # on admet que l'élément a appartient effectivement à L
g = 0  # le point qui correspondra à l'indice le plus à gauche
d = np.size(L) - 1  # le point qui correspondra à l'indice le + à droite
m = int((g+d)/2)  # m point milieu entre g et d (on arrondit à gauche)
while d > g:
    if L[m] < a:
        g = m + 1  # g légèrement décalé à droite par rapport à m
    else:
        d = m
        m = int((g+d)/2)  # on met à jour m
return m # renvoie m la position (index) de a dans L</pre>
```

B / Démonstrations

Notons, dans cette partie, k le numéro de l'itération en cours d'exécution (que nous avions noté j dans le cours).

- Q1 \mathcal{O} Démontrer par récurrence que la suite $(d_k g_k)$ est une suite d'entier.
- Q2 $/\!\!/$ Démontrer que, tant qu'on reste dans la boucle, à l'issue d'une boucle on a : $d_k g_k < d_{k-1} g_{k-1}$ Que peut-on en déduire ?
- Q3 ${\mathbb Z}$ Démontrer la validité de cet algorithme. On suppose ${\mathbb Z}$ invariant de boucle : $L_g \le a \le L_d$.

Aide: vous aurez besoin du fait que la suite (L_k) est strictement croissante. On admet que a est contenu dans L, on notera K son indice (que l'on cherche), c'est-à-dire $L_K=a$.

Q4 - P Démontrer qu'à la fin de toute itération k, on a l'inégalité suivante :

$$\boxed{\frac{d_{k-1} - g_{k-1}}{2} - 1 \le d_k - g_k < \frac{d_{k-1} - g_{k-1}}{2}}$$

Point mathématique : on pourrait alors démontrer que ceci permet l'encadrement suivant :

$$\frac{d_0 - g_0 + 2}{2^k} - 2 \le d_k - g_k < \frac{d_0 - g_0}{2^k}$$

Pour l'inégalité de droite, on peut intuiter cette inégalité en faisant l'analogie avec une suite géométrique $u_k = q \cdot u_{k-1}$ (avec la raison $q = \frac{1}{2}$ dans notre cas), on sait que $u_k = u_0 \cdot q^k$. C'est-à-dire ici $u_k = \frac{u_0}{2^k}$. La démonstration se fait par récurrence.

• Pour l'inégalité de gauche, on l'intuite en faisant l'analogie avec une suite arithmético-géométrique :

$$v_k = a \cdot v_{k-1} + b$$

(avec, important, ici $a=1/2 \neq 1$ sinon ce serait une suite arithmétique simple ! et b=-1)

On aurait alors $v_k = (v_0 - r) \cdot a^k + r$, avec $r = \frac{b}{1-a}$

Dans notre cas, $a = \frac{1}{2}$ et $r = \frac{-1}{1 - 1/2} = \frac{-1}{1/2} = -2$, d'où $v_k = (v_0 + 2) \cdot a^k - 2$ (démo par récurrence aussi).

Q5 – ℓ Démontrer alors que l'**ordre de complexité** de l'algorithme de dichotomie dans le pire des cas (c'est-à-dire le nombre d'itération k_r nécessaire pour que l'algorithme renvoie la solution recherchée) est $k_r = O(\log_2(N))$.

Remarque: N étant la taille de la liste en entrée. Ce résultat sera alors admis comme étant un résultat de cours.

C / Comparaison relative face à une méthode « naïve »

Si l'on n'avait pas réfléchi à l'algorithme optimisé de dichotomie (qui est un algorithme du type **diviser pour régner**), on aurait potentiellement écrit une version de recherche de l'élément a dans la liste L par balayage. C'est-à-dire une fonction qui parcoure un à un tous les éléments de la liste L jusqu'à trouver l'élément recherché. On quittera la fonction dès que l'élément a été trouvé.

Q6 - € Ecrire une telle fonction recherche (a, L) qui renvoie l'index de l'élément a dans la liste L.

Q7 – / Quelle aurait été l'ordre de complexité de cette fonction

- dans le pire des cas ?
- dans le meilleur des cas ?
- en moyenne ?