Informatique Pour Tous

TD 24.2 – Codage Conversions numériques : binaire et hexadécimal

1 / Conversion décimal → binaire

En cours sur la numération, nous avons vu l'algorithme suivant pour passer de décimal vers binaire :

- 1. Regarder combien de bits sont nécessaires pour écrire K. On prend N bits tels que $2^{N-1} 1 < K \le 2^N 1$
- 2. Écrire la base des puissances de 2 de droite à gauche : L puiss $2 = [2^{N-1}; 2^{N-2}; ...; 4; 2; 1]$
- Soit x = K. # (x désignera le reste pour la suite)

 On lit la liste précédente de gauche à droite. Pour chaque élément 2^i de la liste L_puiss_2 si $x \ge 2^i$ alors on écrit 1 sous le 2^i correspondant, et x est remplacé par son ancienne valeur moins 2^i .

on écrit 0 et x inchangé.

(Dans les deux cas, on passe ensuite à l'élément suivant 2^{i-1})

- Q1 − ≦ Quelle valeur maximale peut être codée en binaire naturel à l'aide de N bits ?
- Q2 $\stackrel{\text{decimal}}{=}$ Écrire une fonction $bits_necessaires$ ($N_decimal$) prenant en argument une valeur entière décimale $N_decimal$ et renvoyant un entier (int) correspondant au nombre de bits nécessaires pour coder ce nombre.

Algorithme: On s'interdira l'usage d'un logarithme : on utilisera plutôt une boucle *while* pour ce problème : on cherche donc N tel que : $2^{N-1}-1 < N_{\text{decimal}} \le 2^N-1$. La condition du *while* ne devra compter qu'une seule inégalité.

Contrainte supplémentaire : on considèrera en début de fonction l'éventualité où $N_decimal$ vaut 0, auquel cas la fonction renverra 1.

```
Tests: print(bits_necessaires(0))  # doit afficher 1
    print(bits_necessaires(1))  # doit afficher 1
    print(bits_necessaires(128))  # doit afficher 8
    print(bits_necessaires(255))  # doit afficher 8
```

Q3 – $\[= \]$ Écrire une fonction $base_2(N_bits)$ prenant en argument un nombre entier N_bits (positif non nul) et renvoyant la liste des puissances de 2 : $[2^{N_bits-1}; 2^{N_bits-2}; ...; 4; 2; 1]$ comptant N_bits éléments.

```
Test: print(base 2(8)) # doit afficher [128, 64, 32, 16, 8, 4, 2, 1]
```

Q5 – $\stackrel{\longleftarrow}{=}$ Écrire une fonction $binaire_decimal$ ($L_binaire$) prenant en argument une liste de 0 et de 1, et renvoyant la valeur décimale correspondante $\sum_{i=0}^{N-1} L[N-1-i] \times 2^i$. (N désignant ici la taille de la liste)

Q5 – $\stackrel{\text{def}}{=}$ Écrire une fonction $digit_hexa(N)$ prenant en argument un nombre N (compris entre 0 et 15) et renvoyant son codage en string hexadécimal (str qui sera de taille 1).

```
Rappel: en hexadécimal, 10 \Leftrightarrow "A"; 11 \Leftrightarrow "B"; ...; 14 \Leftrightarrow "E"; 15 \Leftrightarrow "F".
```

Contrainte: on impose la trame suivante (à compléter)

On veut écrire une fonction $decoupe_4$ (L) prenant en argument une liste, de taille quelconque N, et qui renverra une liste de listes toutes de taille 4 : l'idée est de découper une liste de valeurs binaires par lots de 4 bits.

print(digit hexa(15)) # doit afficher "F" (l'afficheur cache les guillemets)

```
Exemple simple: decoupe_4([1,1,0,0,0,0,1,0]) # renverra [[1,1,0,0],[0,0,1,0]]
```

Dans le cas général, *N* n'est cependant pas un multiple de 4. Dans ce cas, la fonction complètera la liste *L* avec des zéro à gauche, jusqu'à ce que la liste soit de taille multiple de 4. De la sorte :

```
Exemples: decoupe_4([1,1,1,0,1,0]) # renverra [[0,0,1,1],[1,0,1,0]] decoupe_4([1,1,1,1,0]) # renverra [[0,0,0,1],[1,1,1,0]]
```

On donne la trame suivante à copier-coller et compléter :

```
def decoupe_4(L):
    N = len(L)
    if ... # s'il y a besoin de compléter (donc si N n'est pas multiple de 4)
        N_bits_a_completer = ... # nombre de 0 à compléter à gauche.
        L = ... # on complète avec ce nombre de 0 à gauche. Aide : [0]*2 donne [0,0]
    L_sortie = []
    for k in range(... # combien y aura-t-il d'éléments dans la liste de sortie ?
        L_sortie.append(... # on « range » la kième liste de taille 4
    return L_sortie
```

Q7 − ≦ Écrire la fonction decoupe 4 (L) ainsi décrite, et la tester, notamment sur les exemples donnés.

Pour passer d'un nombre binaire à une écriture hexadécimale, on peut regrouper les bits 4 par 4 (puisque 4 bits permettent d'écrire une valeur décimale entre 0 et 15, c'est-à-dire un seul digit en hexadécimal), puis interpréter la valeur décimale de chaque lot de 4 bits, pour enfin lui affecter une seule valeur hexadécimale.

```
Exemple: En binaire (bits regroupés 4 par 4): 1010 0001 1111 0101 Conversion de chaque lot de 4 en décimal : 10 1 15 5 Interprétation de chacun en hexadécimal (ici str) : "A" "1" "F" "5"
```

Q8 – $\[= \]$ En vous aidant des **trois** questions précédentes, écrire la fonction $bin_hexa(L)$ qui prend en argument une liste de bits (valeur 0 ou 1) correspondant à l'écriture binaire d'un nombre, et qui renvoie **un seul** str correspondant à l'écriture hexadécimale de ce même nombre.

```
Tests: print(bin_hexa([1,0,1,0,0,0,1,1,1,1,1,0,1,0,1])) # doit afficher "A1F5"
    print(bin_hexa([1,1,1,1,0])) # doit afficher "1E"
```

Q9 – En vous appuyant sur les fonctions nécessaires dans ce qui précède, écrire une fonction $decim_hexa(N)$ qui prend en argument un nombre (décimal) N et renvoie son écriture en hexadécimal.

```
Aide: cette fonction peut tenir en 2 lignes ( def decim_hexa(N) : return ... ).

Tests: print(decim_hexa(201))  # doit afficher "C9"  # doit afficher "2F0E438E"
```

Remarque : on voit bien ici que l'écriture hexadécimale (8 digits 2F0E 438E) est plus « compacte » que l'écriture décimale (9 digits 789463950), cet écart de nombre de digits nécessaires se creusant quand les valeurs décrites sont vraiment élevées.

3 / Vérification : conversion hexadécimal → décimal

Dans cette dernière partie, on suppose qu'on veut vérifier nos résultats des parties précédentes. À l'aide des parties 1 et 2 nous avons pu convertir un nombre décimal en hexadécimal (en passant par une écriture binaire). Il s'agit ici de faire la conversion inverse (plus facile), c'est-à-dire repasser le nombre hexadécimal en décimal, pour vérifier qu'on « retombe » bien sur le nombre initial.

Q10 – Écrire une fonction $hexa_decim_1digit(H)$ prenant en argument un caractère (c'est-à-dire un str de taille 1) hexadécimal (qui peut donc valoir "0", "1", ... "9", "A", "B", ... "F") et qui renvoie la valeur décimale (int) correspondante.

Trame : la trame suivante est imposée, à copier-coller et compléter.

```
def hexa_decim_ldigit(H):
    val_possibles = "0123456789ABCDEF"
    for k in range(... # on va chercher l'index de H dans val_possibles
        if ...
        return ...

Tests: print(hexa_decim_ldigit("0")) # doit afficher 0
    print(hexa_decim_ldigit("8")) # doit afficher 8
    print(hexa_decim_ldigit("A")) # doit afficher 10
    print(hexa_decim_ldigit("F")) # doit afficher 15
```

On rappelle que si $H=(H_i)_{0\leq i\leq N-1}$ désigne un nombre hexadécimal, on a :

$$H = H_0 \times 16^{N-1} + H_1 \times 16^{N-2} + \dots + H_{N-2} \times 16 + H_{N-1} \times 1 = \sum_{i=0}^{N-1} H_i \times 16^{N-1-i}$$

Q11 – $\stackrel{\longleftarrow}{=}$ En vous appuyant sur la fonction précédente qui permet d'interpréter les valeurs des H_i , écrire une fonction $\text{hexa_decim}(H)$ prenant en argument un hexadécimal (c'est-à-dire un str de taille quelconque) et qui renvoie la valeur décimale (int) correspondante.

```
Tests: print(hexa_decim("C9"))  # on doit retrouver 201 print(hexa_decim("2F0E438E"))  # on doit retrouver 789463950
```