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Mesures, variabilité et incertitudes

Exercice 3 : Mesure de g avec un pendule simple

As a first example, suppose that we measure g, the acceleration of gravity, using a
simple pendulum. The period of such a pendulum is well known to be T = 2nV\1/g,
where [/ is the length of the pendulum. Thus, if / and T are measured, we can find
g as

g = 4n¥T> (3.28)

This result gives g as the product or quotient of three factors, 4n%, [, and T2. If
the various uncertainties are independent and random, the fractional ‘uncertainty in
our answer is just the quadratic sum of the fractional uncertainties in these factors.
The factor 4n? has no uncertainty, and the fractional uncertainty in 72 is twice that
in T
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Thus, the fractional uncertainty in our answer for g will be
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Suppose we measure the period T for one value of the length / and get the
results®

(3.29)
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= 9295 + 0.1 cm,
= 1.936 = 0.004 s.
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As a first example, suppose that we measure g, the acceleration of gravity, using a
simple pendulum. The period of such a pendulum is well known to be T = 2n\l/g,
where / is the length of the pendulum. Thus, if / and T are measured, we can find
g as

g = 4mT2 (3.28)

This result gives g as the product or quotient of three factors, 4m2, /, and T2. If
the various uncertainties are independent and random, the fractional ‘uncertainty in
our answer is just the quadratic sum of the fractional uncertainties in these factors.
The factor 47 has no uncertainty, and the fractional uncertainty in 72 is twice that
inT:
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Thus, the fractional uncertainty in our answer for g will be
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Suppose we measure the period T for one value of the length [ and get the
results®

(3.29)
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92.95 = 0.1 cm,
1.936 = 0.004 s.
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Exercice 4 : Accélération d'un chariot sur une pente

_ 4m® X (92.95 cm)

(1936 5 979 cm/s.

Sbest

To find our uncertainty in g using (3.29), we need the fractional uncertainties in /
and T. These are easily calculated (in the head) as

6l 8T
— = 0. — = 0.2%.
7 0.1% and T 0.2%
Substituting into (3.29), we find
% = V0.1 + 2 X 022 % = 0.4%;
from which
dg = 0.004 X 979 cm/s*> = 4 cm/s%

T'hus, based on these measurements, our final answer is

g = 979 + 4 cm/s>.

Huving found the measured value of g and its uncertainty, we would naturally com-
pare these values with the accepted value of g. If the latter has its usual value of
ORI em/s?, the present value is entirely satisfactory.

II"this experiment is repeated (as most such experiments should be) with differ-
cul values of the parameters, the uncertainty calculations usually do not need to be
tepented in complete detail. We can often easily convince ourselves that all uncer-
tiinties (in the answers for g) are close enough that no further calculations are
needed; sometimes the uncertainty in a few representative values of g can be calcu-
Iited and the remainder estimated by inspection. In any case, the best procedure is
ot always (o record the various values of /, 7, and g and the corresponding
WHERHinties in o single table. (See Problem 3.40.)

Finally, according fo (3.33), the required acceleration is the product of (3.35)
and (3.36). Multiplying these equations together (and combining the fractional un-
certainties in quadrature), we obtain

I

a = (0.125 cm % 2%) X (698 52 + 9%)

87.3 cm/s® + 9%

I

or

a = 87 + 8 cm/s2.

(3.37)

This answer could now be compared with the expected acceleration gsin 6, if the
latter had been calculated.

When the calculations leading to (3.37) are studied carefully, several interesting
features emerge. First, the 2% uncertainty in the factor /2/2s is completely swamped

by the 9% uncertainty in (1/t,%) — (1/t,%). If further calculations are needed for
subsequent trials, the uncertainties in / and s can therefore be ignored (so long as a
quick check shows they are still just as unimportant).

Another important feature of our calculation is the way in which the 2% and
3% uncertainties in ¢, and ¢, grow when we evaluate 1/, 1/t,% and the difference
(1/,%) — (1/t,%), so that the final uncertainty is 9%. This growth results partly from
taking squares and partly from taking the difference of large numbers. We could
imagine extending the experiment to check the constancy of a by giving the cart an
initial push, so that the speeds v, and v, are both larger. If we did, the times ¢, and
t, would get smaller, and the effects just described would get worse (see Problem
3.42).



Exercice 5 : Incertitude sur une grandeur physique fonction de deux autres grandeurs

the steps just outlined. The uncertainty in g due to & alone, which we denote by  Finally, according to (3.47), the total uncertainty in ¢ is the quadratic sum of these

dq,, is given by (3.49) as two partial uncertainties:
dq, = (error in g due to &x alone) 8g = \(8q,* + (8, (3.52)
d
= || & (3.50) = V087 + (03 = 09.
ox

Thus, the final answer for g is

Il
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¢y — y&x = 12 — 4] X 0.1 = 08.
g = 6.0 0.9

Similarly, the uncertainty in g due to dy is
oq, = (error in g due to Sy alone)
- |2,
ay
® — 2xy|6y = |9 — 12| X 0.1 = 03.

(3.51)

Dans les exercices 3, 4 et 5, I'incertitude-type est noté 6(T) et non pas u(T) comme dans le cours

et le programme.

Exercice 6 : Estimation d’une constante de raideur

A . s 13 . . O-k
Il suffit ici de faire le calcul de la moyenne : k:—ZkI et de I'incertitude type : u(k)z— avec
N i=1 VN
1 ¢ —\2
o, = —Z(k —k) .On trouve : k=13,16+0,06 N.m™.
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